enow.com Web Search

  1. Ad

    related to: how to calculate statistical weight reduction

Search results

  1. Results from the WOW.Com Content Network
  2. Variance reduction - Wikipedia

    en.wikipedia.org/wiki/Variance_reduction

    In mathematics, more specifically in the theory of Monte Carlo methods, variance reduction is a procedure used to increase the precision of the estimates obtained for a given simulation or computational effort. [1] Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results ...

  3. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    Reduced chi-squared statistic. In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating [1] and variance of unit weight in the context of weighted least squares. [2][3] Its square root is called regression standard error, [4 ...

  4. Shrinkage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Shrinkage_(statistics)

    In statistics, shrinkage is the reduction in the effects of sampling variation. In regression analysis, a fitted relationship appears to perform less well on a new data set than on the data set used for fitting. [1] In particular the value of the coefficient of determination 'shrinks'. This idea is complementary to overfitting and, separately ...

  5. Importance sampling - Wikipedia

    en.wikipedia.org/wiki/Importance_sampling

    The weight is given by the likelihood ratio, that is, the Radon–Nikodym derivative of the true underlying distribution with respect to the biased simulation distribution. The fundamental issue in implementing importance sampling simulation is the choice of the biased distribution which encourages the important regions of the input variables.

  6. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    Weighted arithmetic mean. The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others. The notion of weighted mean plays a role in descriptive statistics and also ...

  7. Linear discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Linear_discriminant_analysis

    Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or events.

  8. Factor analysis - Wikipedia

    en.wikipedia.org/wiki/Factor_analysis

    This reduction is possible because some attributes may be related to each other. The rating given to any one attribute is partially the result of the influence of other attributes. The statistical algorithm deconstructs the rating (called a raw score) into its various components and reconstructs the partial scores into underlying factor scores.

  9. Inverse probability weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability_weighting

    Inverse probability weighting is a statistical technique for estimating quantities related to a population other than the one from which the data was collected. Study designs with a disparate sampling population and population of target inference (target population) are common in application. [1] There may be prohibitive factors barring ...

  1. Ad

    related to: how to calculate statistical weight reduction