Search results
Results from the WOW.Com Content Network
Coulomb friction, named after Charles-Augustin de Coulomb, is an approximate model used to calculate the force of dry friction. It is governed by the model: , where is the force of friction exerted by each surface on the other. It is parallel to the surface, in a direction opposite to the net applied force.
Equation for the velocity of a body in viscous fluid. In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds ...
Traction (mechanics) Traction, traction force or tractive force is a force used to generate motion between a body and a tangential surface, through the use of either dry friction or shear force. [1][2][3][4] It has important applications in vehicles, as in tractive effort. Traction can also refer to the maximum tractive force between a body and ...
The capstan equation[1] or belt friction equation, also known as Euler–Eytelwein formula[2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan). [4][1] It also applies for fractions of one turn as occur with rope drives ...
The static friction force will exactly oppose forces applied to an object parallel to a surface up to the limit specified by the coefficient of static friction multiplied by the normal force (). In other words, the magnitude of the static friction force satisfies the inequality: 0 ≤ F s f ≤ μ s f F N . {\displaystyle 0\leq \mathbf {F ...
Drag equation. In fluid dynamics, the drag equation is a formula used to calculate the force of drag experienced by an object due to movement through a fully enclosing fluid. The equation is: where. F d {\displaystyle F_ {\rm {d}}} is the drag force, which is by definition the force component in the direction of the flow velocity,
Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation (or movement) of the wheel, roadbed, etc., is recovered when the pressure is removed.
The force between a fluid and a body, when there is relative motion, can only be transmitted by normal pressure and tangential friction stresses. So, for the whole body, the drag part of the force, which is in-line with the approaching fluid motion, is composed of frictional drag (viscous drag) and pressure drag (form drag).