enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    hide. In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.

  3. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure. In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] where (in SI units): u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between ...

  4. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    Darcy friction factor formulae. In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used in the Darcy–Weisbach equation, for the description of friction losses in pipe flow as well as open-channel flow. The Darcy friction factor is also known as ...

  5. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    Contents. Moody chart. In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor fD, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  6. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    V is velocity (in ft/s for US customary units, in m/s for SI units) k is a conversion factor for the unit system (k = 1.318 for US customary units, k = 0.849 for SI units) C is a roughness coefficient; R is the hydraulic radius (in ft for US customary units, in m for SI units) S is the slope of the energy line (head loss per length of pipe or h ...

  7. Shear velocity - Wikipedia

    en.wikipedia.org/wiki/Shear_velocity

    Shear velocity. Shear velocity, also called friction velocity, is a form by which a shear stress may be re-written in units of velocity. It is useful as a method in fluid mechanics to compare true velocities, such as the velocity of a flow in a stream, to a velocity that relates shear between layers of flow. Shear velocity is used to describe ...

  8. Ergun equation - Wikipedia

    en.wikipedia.org/wiki/Ergun_equation

    To calculate the pressure drop in a given reactor, the following equation may be deduced: = + | |. This arrangement of the Ergun equation makes clear its close relationship to the simpler Kozeny-Carman equation, which describes laminar flow of fluids across packed beds via the first term on the right hand side.

  9. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    Fanning friction factor. The Fanning friction factor (named after American engineer John T. Fanning) is a dimensionless number used as a local parameter in continuum mechanics calculations. It is defined as the ratio between the local shear stress and the local flow kinetic energy density: [1][2] where.