enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time–frequency analysis - Wikipedia

    en.wikipedia.org/wiki/Timefrequency_analysis

    In signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function ...

  3. Chirp spectrum - Wikipedia

    en.wikipedia.org/wiki/Chirp_spectrum

    The spectrum of a chirp pulse describes its characteristics in terms of its frequency components. This frequency-domain representation is an alternative to the more familiar time-domain waveform, and the two versions are mathematically related by the Fourier transform.

  4. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    The inverse Fourier transform converts the frequency-domain function back to the time-domain function. A spectrum analyzer is a tool commonly used to visualize electronic signals in the frequency domain. A frequency-domain representation may describe either a static function or a particular time period of a dynamic function (signal or system).

  5. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    Recall that decimation of sampled data in one domain (time or frequency) produces overlap (sometimes known as aliasing) in the other, and vice versa. Compared to an L {\displaystyle L} -length DFT, the s N {\displaystyle s_{_{N}}} summation/overlap causes decimation in frequency, [ 1 ] : p.558 leaving only DTFT samples least affected by ...

  6. Transformation between distributions in time–frequency ...

    en.wikipedia.org/wiki/Transformation_between...

    Noting that a signal can be recovered from a particular distribution under certain conditions, given a certain TFD ρ 1 (t,f) representing the signal in a joint time–frequency domain, another, different, TFD ρ 2 (t,f) of the same signal can be obtained to calculate any other distribution, by simple smoothing or filtering; some of these ...

  7. Constant-Q transform - Wikipedia

    en.wikipedia.org/wiki/Constant-Q_transform

    Given a data series at sampling frequency f s = 1/T, T being the sampling period of our data, for each frequency bin we can define the following: Filter width, δf k. Q, the "quality factor": =. This is shown below to be the integer number of cycles processed at a center frequency f k. As such, this somewhat defines the time complexity of the ...

  8. Time–frequency representation - Wikipedia

    en.wikipedia.org/wiki/Timefrequency...

    A time–frequency representation (TFR) is a view of a signal (taken to be a function of time) represented over both time and frequency. [1] Time–frequency analysis means analysis into the time–frequency domain provided by a TFR. This is achieved by using a formulation often called "Time–Frequency Distribution", abbreviated as TFD.

  9. Order tracking (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Order_tracking_(signal...

    In rotordynamics, order tracking is a family of signal processing tools aimed at transforming a measured signal from time domain to angular (or order) domain. These techniques are applied to asynchronously sampled signals (i.e. with a constant sample rate in Hertz) to obtain the same signal sampled at constant angular increments of a reference shaft.