Search results
Results from the WOW.Com Content Network
Note that 1 represents equality in the last line above. This odd behavior is caused by an implicit conversion of i_value to float when it is compared with f_value. The conversion causes loss of precision, which makes the values equal before the comparison. Important takeaways: float to int causes truncation, i.e., removal of the fractional part.
In addition to the assumption about bit-representation of floating-point numbers, the above floating-point type-punning example also violates the C language's constraints on how objects are accessed: [3] the declared type of x is float but it is read through an expression of type unsigned int.
C# (/ ˌ s iː ˈ ʃ ɑːr p / see SHARP) [b] is a general-purpose high-level programming language supporting multiple paradigms.C# encompasses static typing, [16]: 4 strong typing, lexically scoped, imperative, declarative, functional, generic, [16]: 22 object-oriented (class-based), and component-oriented programming disciplines.
Return value End Function The As clause is not required if Option Strict is off. A type character may be used instead of the As clause. If control exits the function without a return value having been explicitly specified, the function returns the default value for the return type. Sub Main(««ByVal »args() As String») instructions End Subor
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.
Information about the actual properties, such as size, of the basic arithmetic types, is provided via macro constants in two headers: <limits.h> header (climits header in C++) defines macros for integer types and <float.h> header (cfloat header in C++) defines macros for floating-point types. The actual values depend on the implementation.
A dependent type is a type whose definition depends on a value. Two common examples of dependent types are dependent functions and dependent pairs. The return type of a dependent function may depend on the value (not just type) of one of its arguments. A dependent pair may have a second value of which the type depends on the first value.