enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mode-k flattening - Wikipedia

    en.wikipedia.org/wiki/Mode-k_flattening

    The tensor can be flattened in three ways to obtain matrices comprising its mode-0, mode-1, and mode-2 vectors. [ 1 ] In multilinear algebra , mode-m flattening [ 1 ] [ 2 ] [ 3 ] , also known as matrixizing , matricizing , or unfolding , [ 4 ] is an operation that reshapes a multi-way array A {\displaystyle {\mathcal {A}}} into a matrix denoted ...

  3. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The order of a tensor is the sum of these two numbers. The order (also degree or rank) of a tensor is thus the sum of the orders of its arguments plus the order of the resulting tensor. This is also the dimensionality of the array of numbers needed to represent the tensor with respect to a specific basis, or equivalently, the number of indices ...

  4. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    Concretely, in the case where the vector space has an inner product, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V ∗ := Hom ( V , K ) {\displaystyle V^{*}:={\text{Hom}}(V,K)} , so that α ∈ V ∗ {\displaystyle \alpha \in V^{*}} is a linear map α : V → K ...

  5. Tensor reshaping - Wikipedia

    en.wikipedia.org/wiki/Tensor_reshaping

    In multilinear algebra, a reshaping of tensors is any bijection between the set of indices of an order-tensor and the set of indices of an order-tensor, where <.The use of indices presupposes tensors in coordinate representation with respect to a basis.

  6. Multilinear subspace learning - Wikipedia

    en.wikipedia.org/wiki/Multilinear_subspace_learning

    A TTP is a direct projection of a high-dimensional tensor to a low-dimensional tensor of the same order, using N projection matrices for an Nth-order tensor. It can be performed in N steps with each step performing a tensor-matrix multiplication (product). The N steps are exchangeable. [19]

  7. Tensor product model transformation - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_model...

    The core step of the TP model transformation was extended to generate different types of convex TP functions or TP models (TP type polytopic qLPV models), in order to focus on the systematic (numerical and automatic) modification of the convex hull instead of developing new LMI equations for feasible controller design (this is the widely ...

  8. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    Tensor order is the number of indices required to write a tensor, and thus matrices all have tensor order 2. More precisely, matrices are tensors of type (1,1), having one row index and one column index, also called covariant order 1 and contravariant order 1; see Tensor (intrinsic definition) for details.

  9. Tucker decomposition - Wikipedia

    en.wikipedia.org/wiki/Tucker_decomposition

    For a 3rd-order tensor , where is either or , Tucker Decomposition can be denoted as follows, = () where is the core tensor, a 3rd-order tensor that contains the 1-mode, 2-mode and 3-mode singular values of , which are defined as the Frobenius norm of the 1-mode, 2-mode and 3-mode slices of tensor respectively.