enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    As the number of discrete events increases, the function begins to resemble a normal distribution. Comparison of probability density functions, () for the sum of fair 6-sided dice to show their convergence to a normal distribution with increasing , in accordance to the central limit theorem. In the bottom-right graph, smoothed profiles of the ...

  3. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  4. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  5. σ-algebra - Wikipedia

    en.wikipedia.org/wiki/Σ-algebra

    Also, in probability, σ-algebras are pivotal in the definition of conditional expectation. In statistics, (sub) σ-algebras are needed for the formal mathematical definition of a sufficient statistic, [3] particularly when the statistic is a function or a random process and the notion of conditional density is not applicable.

  6. Wrapped normal distribution - Wikipedia

    en.wikipedia.org/wiki/Wrapped_normal_distribution

    In terms of the circular variable = the circular moments of the wrapped normal distribution are the characteristic function of the normal distribution evaluated at integer arguments: z n = ∫ Γ e i n θ f W N ( θ ; μ , σ ) d θ = e i n μ − n 2 σ 2 / 2 . {\displaystyle \langle z^{n}\rangle =\int _{\Gamma }e^{in\theta }\,f_{WN}(\theta ...

  7. Kernel (statistics) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(statistics)

    In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the

  8. Gaussian measure - Wikipedia

    en.wikipedia.org/wiki/Gaussian_measure

    is a Borel measure (in fact, as remarked above, it is defined on the completion of the Borel sigma algebra, which is a finer structure); is equivalent to Lebesgue measure: λ n ≪ γ n ≪ λ n {\displaystyle \lambda ^{n}\ll \gamma ^{n}\ll \lambda ^{n}} , where ≪ {\displaystyle \ll } stands for absolute continuity of measures;

  9. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    This function is real-valued because it corresponds to a random variable that is symmetric around the origin; however characteristic functions may generally be complex-valued. In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution.