enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Audio crossover - Wikipedia

    en.wikipedia.org/wiki/Audio_crossover

    A third- or fourth-order acoustic crossover often has just a second-order electrical filter. This requires that speaker drivers be well behaved a considerable way from the nominal crossover frequency, and further that the high-frequency driver be able to survive a considerable input in a frequency range below its crossover point.

  3. Loudspeaker time alignment - Wikipedia

    en.wikipedia.org/wiki/Loudspeaker_time_alignment

    In 1975 Ed Long [1] in cooperation with Ronald J. Wickersham invented the first technique to Time-Align a loudspeaker systems. In 1976 Long presented "A Time-Align Technique for Loudspeakers System Design" [2] at the 54th AES convention demonstrating the use of the Time-Align generator to design improved crossover networks for multi-way loudspeakers systems.

  4. Midwoofer-tweeter-midwoofer - Wikipedia

    en.wikipedia.org/wiki/Midwoofer-tweeter-midwoofer

    The midwoofer-tweeter-midwoofer loudspeaker configuration (called MTM, for short) was a design arrangement from the late 1960s that suffered from serious lobing issues that prevented its popularity until it was perfected by Joseph D'Appolito as a way of correcting the inherent lobe tilting of a typical mid-tweeter (MT) configuration, at the crossover frequency, unless time-aligned. [1]

  5. Linkwitz–Riley filter - Wikipedia

    en.wikipedia.org/wiki/Linkwitz–Riley_filter

    Second-order Linkwitz–Riley crossovers (LR2) have a 12 dB/octave (40 dB/decade) slope. They can be realized by cascading two one-pole filters or using a Sallen Key filter topology with a Q 0 value of 0.5. There is a 180° phase difference between the low-pass and high-pass output of the filter, which can be corrected by inverting one signal.

  6. Acoustic transmission line - Wikipedia

    en.wikipedia.org/wiki/Acoustic_transmission_line

    An acoustic transmission line is the use of a long duct, which acts as an acoustic waveguide and is used to produce or transmit sound in an undistorted manner. Technically it is the acoustic analog of the electrical transmission line , typically conceived as a rigid-walled duct or tube, that is long and thin relative to the wavelength of sound ...

  7. Talk:Audio crossover - Wikipedia

    en.wikipedia.org/wiki/Talk:Audio_crossover

    3. The response shapes in the graph are correct. Second order, or 2 pole circuits have a 40dB/decade slope and a Butterworth is -3dB at cutoff and an LR is -6dB. The sum of a lowpass and highpass butterworth 2nd order crossover has a peak if their cutoff frequencies are the same. A Linkwitz-Riley 2nd order is -6dB at the cutoff and sums flat.

  8. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    A simple example of a Butterworth filter is the third-order low-pass design shown in the figure on the right, with = 4/3 F, = 1 Ω, = 3/2 H, and = 1/2 H. [3] Taking the impedance of the capacitors to be / and the impedance of the inductors to be , where = + is the complex frequency, the circuit equations yield the transfer function for this device:

  9. Audio time stretching and pitch scaling - Wikipedia

    en.wikipedia.org/wiki/Audio_time_stretching_and...

    In order to preserve an audio signal's pitch when stretching or compressing its duration, many time-scale modification (TSM) procedures follow a frame-based approach. [6] Given an original discrete-time audio signal, this strategy's first step is to split the signal into short analysis frames of fixed length.