Search results
Results from the WOW.Com Content Network
It is based on Stochastic Neighbor Embedding originally developed by Geoffrey Hinton and Sam Roweis, [1] where Laurens van der Maaten and Hinton proposed the t-distributed variant. [2] It is a nonlinear dimensionality reduction technique for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions ...
These clusters then could be visualized as a two-dimensional "map" such that observations in proximal clusters have more similar values than observations in distal clusters. This can make high-dimensional data easier to visualize and analyze.
Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...
A cluster can be described largely by the maximum distance needed to connect parts of the cluster. At different distances, different clusters will form, which can be represented using a dendrogram, which explains where the common name "hierarchical clustering" comes from: these algorithms do not provide a single partitioning of the data set ...
Instead it is possible to maintain an array of distances between all pairs of clusters. Whenever two clusters are merged, the formula can be used to compute the distance between the merged cluster and all other clusters. Maintaining this array over the course of the clustering algorithm takes time and space O(n 2). The nearest-neighbor chain ...
Biclustering, block clustering, [1] [2] Co-clustering or two-mode clustering [3] [4] [5] is a data mining technique which allows simultaneous clustering of the rows and columns of a matrix. The term was first introduced by Boris Mirkin [ 6 ] to name a technique introduced many years earlier, [ 6 ] in 1972, by John A. Hartigan .
The distinction between quantitative and categorical variables is important because the two types require different methods of visualization. Two primary types of information displays are tables and graphs. A table contains quantitative data organized into rows and columns with categorical labels. It is primarily used to look up specific values.
Consensus clustering is a method of aggregating (potentially conflicting) results from multiple clustering algorithms.Also called cluster ensembles [1] or aggregation of clustering (or partitions), it refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better ...