Search results
Results from the WOW.Com Content Network
The differentiator circuit is essentially a high-pass filter. It can generate a square wave from a triangle wave input and produce alternating-direction voltage spikes when a square wave is applied. In ideal cases, a differentiator reverses the effects of an integrator on a waveform, and conversely.
The integrator circuit is mostly used in analog computers, analog-to-digital converters and wave-shaping circuits. A common wave-shaping use is as a charge amplifier and they are usually constructed using an operational amplifier though they can use high gain discrete transistor configurations.
One example of zero state response being used is in integrator and differentiator circuits. By examining a simple integrator circuit it can be demonstrated that when a function is put into a linear time-invariant (LTI) system, an output can be characterized by a superposition or sum of the Zero Input Response and the zero state response.
Amplifies the difference in voltage between its inputs. The name "differential amplifier" must not be confused with the " differentiator ", which is also shown on this page. The " instrumentation amplifier ", which is also shown on this page, is a modification of the differential amplifier that also provides high input impedance .
A voltage integrator is an electronic device performing a time integration of an electric voltage, thus measuring the total volt-second product. A first-order low-pass filter such as a resistor–capacitor circuit acts like a voltage integrator at high frequencies well above the filter's cutoff frequency.
Associated with the bandwidth limitation is a phase difference between the input signal and the amplifier output that can lead to oscillation in some feedback circuits. For example, a sinusoidal output signal meant to interfere destructively with an input signal of the same frequency will interfere constructively if delayed by 180 degrees ...
These differences mean the vast majority of standard operational amplifier applications aren't directly implementable with OTAs. However, OTAs can implement voltage-controlled filters , voltage-controlled oscillators (e.g. variable frequency oscillators ), voltage-controlled resistors , and voltage-controlled variable gain amplifiers .
A differential amplifier is a type of electronic amplifier that amplifies the difference between two input voltages but suppresses any voltage common to the two inputs. [1] It is an analog circuit with two inputs and + and one output , in which the output is ideally proportional to the difference between the two voltages: