enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    The following are the headers for Hilbert's 23 problems as they appeared in the 1902 translation in the Bulletin of the American Mathematical Society. [1] 1. Cantor's problem of the cardinal number of the continuum. 2. The compatibility of the arithmetical axioms. 3. The equality of the volumes of two tetrahedra of equal bases and equal altitudes.

  3. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  4. Hilbert's seventeenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_seventeenth_problem

    Hilbert's seventeenth problem. Hilbert's seventeenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It concerns the expression of positive definite rational functions as sums of quotients of squares. The original question may be reformulated as:

  5. Hilbert's nineteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_nineteenth_problem

    Hilbert's nineteenth problem is one of the 23 Hilbert problems, set out in a list compiled by David Hilbert in 1900. [1] It asks whether the solutions of regular problems in the calculus of variations are always analytic. [2] Informally, and perhaps less directly, since Hilbert's concept of a " regular variational problem " identifies this ...

  6. Hilbert's sixteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_sixteenth_problem

    The first part of Hilbert's 16th problem. In 1876, Harnack investigated algebraic curves in the real projective plane and found that curves of degree n could have no more than. separate connected components. Furthermore, he showed how to construct curves that attained that upper bound, and thus that it was the best possible bound.

  7. Hilbert's second problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_second_problem

    Hilbert's second problem. In mathematics, Hilbert's second problem was posed by David Hilbert in 1900 as one of his 23 problems. It asks for a proof that arithmetic is consistent – free of any internal contradictions. Hilbert stated that the axioms he considered for arithmetic were the ones given in Hilbert (1900), which include a second ...

  8. Hilbert's fifteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_fifteenth_problem

    Introduction. Schubert calculus is the intersection theory of the 19th century, together with applications to enumerative geometry. Justifying this calculus was the content of Hilbert's 15th problem, and was also the major topic of the 20 century algebraic geometry. [1][2] In the course of securing the foundations of intersection theory, Van ...

  9. Hilbert's fourth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_fourth_problem

    In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry.In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry (Euclidean, hyperbolic and elliptic), with those axioms of congruence that involve the concept of the angle dropped ...