Search results
Results from the WOW.Com Content Network
The nine-point circles are all congruent with a radius of half that of the cyclic quadrilateral's circumcircle. The nine-point circles form a set of four Johnson circles. Consequently, the four nine-point centers are cyclic and lie on a circle congruent to the four nine-point circles that is centered at the anticenter of the cyclic quadrilateral.
The problem of maximizing the total area of three circles in a triangle is never solved by the Malfatti circles. Instead, the optimal solution can always be found by a greedy algorithm that finds the largest circle within the given triangle, the largest circle within the three connected subsets of the triangle outside of the first circle, and ...
A compact binary circle packing with the most similarly sized circles possible. [7] It is also the densest possible packing of discs with this size ratio (ratio of 0.6375559772 with packing fraction (area density) of 0.910683). [8] There are also a range of problems which permit the sizes of the circles to be non-uniform.
The optimal packing of 15 circles in a square Optimal solutions have been proven for n ≤ 30. Packing circles in a rectangle; Packing circles in an isosceles right triangle - good estimates are known for n < 300. Packing circles in an equilateral triangle - Optimal solutions are known for n < 13, and conjectures are available for n < 28. [14]
An inversion in their tangent point with respect to a circle of appropriate radius transforms the two touching given circles into two parallel lines, and the third given circle into another circle. Thus, the solutions may be found by sliding a circle of constant radius between two parallel lines until it contacts the transformed third circle.
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.
Consider a solution circle of radius r s and three given circles of radii r 1, r 2 and r 3. If the solution circle is externally tangent to all three given circles, the distances between the center of the solution circle and the centers of the given circles equal d 1 = r 1 + r s, d 2 = r 2 + r s and d 3 = r 3 + r s, respectively.
Malfatti's problem is to carve three cylinders from a triangular block of marble, using as much of the marble as possible. In 1803, Gian Francesco Malfatti conjectured that the solution would be obtained by inscribing three mutually tangent circles into the triangle (a problem that had previously been considered by Japanese mathematician Ajima Naonobu); these circles are now known as the ...