enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    This characterization is used to specify intervals by mean of interval notation, which is described below. An open interval does not include any endpoint, and is indicated with parentheses. [2] For example, (,) = {< <} is the interval of all real numbers greater than 0 and less than 1.

  3. One-sided limit - Wikipedia

    en.wikipedia.org/wiki/One-sided_limit

    The function () = + ⁡ (), where ⁡ denotes the sign function, has a left limit of , a right limit of +, and a function value of at the point =. In calculus, a one-sided limit refers to either one of the two limits of a function of a real variable as approaches a specified point either from the left or from the right.

  4. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    Instead, the inequalities must be solved independently, yielding x < ⁠ 1 / 2 ⁠ and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < ⁠ 1 / 2 ⁠. Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the logical conjunction of the inequalities ...

  5. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.

  6. Hölder's inequality - Wikipedia

    en.wikipedia.org/wiki/Hölder's_inequality

    Hölder's inequality is used to prove the Minkowski inequality, which is the triangle inequality in the space L p (μ), and also to establish that L q (μ) is the dual space of L p (μ) for p ∈ [1, ∞). Hölder's inequality (in a slightly different form) was first found by Leonard James Rogers .

  7. Indicator function - Wikipedia

    en.wikipedia.org/wiki/Indicator_function

    This identity is used in a simple proof of Markov's inequality. In many cases, such as order theory , the inverse of the indicator function may be defined. This is commonly called the generalized Möbius function , as a generalization of the inverse of the indicator function in elementary number theory , the Möbius function .

  8. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Schwarz_inequality

    where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).

  9. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    When = and n is odd, any number m in the interval () (+) is a median of the binomial distribution. If p = 1 2 {\displaystyle p={\frac {1}{2}}} and n is even, then m = n 2 {\displaystyle m={\frac {n}{2}}} is the unique median.