enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Evolutionary algorithm - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_algorithm

    Evolutionary algorithms (EA) reproduce essential elements of the biological evolution in a computer algorithm in order to solve “difficult” problems, at least approximately, for which no exact or satisfactory solution methods are known.

  3. Evolutionary programming - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_programming

    Evolutionary programming is an evolutionary algorithm, where a share of new population is created by mutation of previous population without crossover. [ 1 ] [ 2 ] Evolutionary programming differs from evolution strategy ES( μ + λ {\displaystyle \mu +\lambda } ) in one detail. [ 1 ]

  4. DEAP (software) - Wikipedia

    en.wikipedia.org/wiki/DEAP_(software)

    Distributed Evolutionary Algorithms in Python (DEAP) is an evolutionary computation framework for rapid prototyping and testing of ideas. [2] [3] [4] It incorporates the data structures and tools required to implement most common evolutionary computation techniques such as genetic algorithm, genetic programming, evolution strategies, particle swarm optimization, differential evolution, traffic ...

  5. Genetic programming - Wikipedia

    en.wikipedia.org/wiki/Genetic_programming

    Genetic programming (GP) is an evolutionary algorithm, an artificial intelligence technique mimicking natural evolution, which operates on a population of programs.It applies the genetic operators selection according to a predefined fitness measure, mutation and crossover.

  6. Evolutionary computation - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_computation

    As academic interest grew, dramatic increases in the power of computers allowed practical applications, including the automatic evolution of computer programs. [8] Evolutionary algorithms are now used to solve multi-dimensional problems more efficiently than software produced by human designers, and also to optimize the design of systems. [9] [10]

  7. Neuroevolution - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution

    Neuroevolution, or neuro-evolution, is a form of artificial intelligence that uses evolutionary algorithms to generate artificial neural networks (ANN), parameters, and rules. [1] It is most commonly applied in artificial life , general game playing [ 2 ] and evolutionary robotics .

  8. Evolution strategy - Wikipedia

    en.wikipedia.org/wiki/Evolution_strategy

    Evolution strategy (ES) from computer science is a subclass of evolutionary algorithms, which serves as an optimization technique. [1] It uses the major genetic operators mutation , recombination and selection of parents .

  9. Differential evolution - Wikipedia

    en.wikipedia.org/wiki/Differential_evolution

    Differential evolution (DE) is an evolutionary algorithm to optimize a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. Such methods are commonly known as metaheuristics as they make few or no assumptions about the optimized problem and can search very large spaces of candidate solutions.