enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dividing a square into similar rectangles - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_square_into...

    However, there are three distinct ways of partitioning a square into three similar rectangles: [1] [2] The trivial solution given by three congruent rectangles with aspect ratio 3:1. The solution in which two of the three rectangles are congruent and the third one has twice the side length of the other two, where the rectangles have aspect ...

  3. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    In two dimensions, 2x 1 + 2x 2 is the perimeter of a rectangle with sides of length x 1 and x 2. Similarly, 4 √ x 1 x 2 is the perimeter of a square with the same area, x 1 x 2, as that rectangle. Thus for n = 2 the AM–GM inequality states that a rectangle of a given area has the smallest perimeter if that rectangle is also a square.

  4. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    Given a rectangle with length l and width w, the formula for the area is: [2] A = lw (rectangle). That is, the area of the rectangle is the length multiplied by the width. As a special case, as l = w in the case of a square, the area of a square with side length s is given by the formula: [1] [2] A = s 2 (square). The formula for the area of a ...

  5. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    For illustration, a 24×60 rectangular area can be divided into a grid of: 1×1 squares, 2×2 squares, 3×3 squares, 4×4 squares, 6×6 squares or 12×12 squares. Therefore, 12 is the GCD of 24 and 60 .

  6. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Here, 2 is being multiplied by 3 using scaling, giving 6 as a result. Animation for the multiplication 2 × 3 = 6 4 × 5 = 20. The large rectangle is made up of 20 squares, each 1 unit by 1 unit. Area of a cloth 4.5m × 2.5m = 11.25m 2; 4 ⁠ 1 / 2 ⁠ × 2 ⁠ 1 / 2 ⁠ = 11 ⁠ 1 / 4

  7. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    The study of polyomino tilings largely concerns two classes of problems: to tile a rectangle with congruent tiles, and to pack one of each n-omino into a rectangle. A classic puzzle of the second kind is to arrange all twelve pentominoes into rectangles sized 3×20, 4×15, 5×12 or 6×10.

  8. Circle packing in a square - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_in_a_square

    Solutions (not necessarily optimal) have been computed for every N ≤ 10,000. [2] Solutions up to N = 20 are shown below. [2] The obvious square packing is optimal for 1, 4, 9, 16, 25, and 36 circles (the six smallest square numbers), but ceases to be optimal for larger squares from 49 onwards.

  9. Missing square puzzle - Wikipedia

    en.wikipedia.org/wiki/Missing_square_puzzle

    The apparent paradox is explained by the fact that the side of the new large square is a little smaller than the original one. If θ is the angle between two opposing sides in each quadrilateral, then the ratio of the two areas is given by sec 2 θ. For θ = 5°, this is approximately 1.00765, which corresponds to a difference of about 0.8%.