Search results
Results from the WOW.Com Content Network
A process is said to be physically reversible if it results in no increase in physical entropy; it is isentropic. There is a style of circuit design ideally exhibiting this property that is referred to as charge recovery logic , adiabatic circuits , or adiabatic computing (see Adiabatic process ).
[a] While processes in isolated systems are never reversible, [3] cyclical processes can be reversible or irreversible. [4] Reversible processes are hypothetical or idealized but central to the second law of thermodynamics. [3] Melting or freezing of ice in water is an example of a realistic process that is nearly reversible.
where a reversible path is chosen from absolute zero to the final state, so that for an isothermal reversible process Δ S = Q r e v T {\displaystyle \Delta S={Q_{rev} \over T}} . In general, for any cyclic process the state points can be connected by reversible paths, so that
Often, when analysing a dynamic thermodynamic process, the simplifying assumption is made that each intermediate state in the process is at equilibrium, producing thermodynamic processes which develop so slowly as to allow each intermediate step to be an equilibrium state and are said to be reversible processes.
Reversible reaction, a chemical reaction for which the position of the chemical equilibrium is very sensitive to the imposed physical conditions; so the reaction can be made to run either forwards or in reverse by changing those conditions; Reversible computing, logical reversibility of a computation; a computational step for which a well ...
A Markov process is called a reversible Markov process or reversible Markov chain if there exists a positive stationary distribution π that satisfies the detailed balance equations [13] =, where P ij is the Markov transition probability from state i to state j, i.e. P ij = P(X t = j | X t − 1 = i), and π i and π j are the equilibrium probabilities of being in states i and j, respectively ...
The promise of reversible computing is that the amount of heat loss for reversible architectures would be minimal for significantly large numbers of transistors. [ 1 ] [ 2 ] Rather than creating entropy (and thus heat) through destructive operations, a reversible architecture conserves the energy by performing other operations that preserve the ...
Many redox processes observed by CV are quasi-reversible or non-reversible. In such cases the thermodynamic potential E 0 1/2 is often deduced by simulation. The irreversibility is indicated by i pa /i pc ≠ 1. Deviations from unity are attributable to a subsequent chemical reaction that is triggered by the electron transfer.