enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Download QR code; Print/export ... In mathematics, positive semidefinite may refer to: Positive semidefinite function ... Cookie statement; Mobile view;

  3. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b

  4. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In contrast with the complex case, a positive-semidefinite operator on a real Hilbert space may not be symmetric. As a counterexample, define A : R 2 → R 2 {\displaystyle A:\mathbb {R} ^{2}\to \mathbb {R} ^{2}} to be an operator of rotation by an acute angle φ ∈ ( − π / 2 , π / 2 ) . {\displaystyle \varphi \in (-\pi /2,\pi /2).}

  5. Definite quadratic form - Wikipedia

    en.wikipedia.org/wiki/Definite_quadratic_form

    If c 1 < 0 and c 2 < 0 , the quadratic form is negative-definite and always evaluates to a negative number whenever [,] [,] . And if one of the constants is negative and the other is 0, then Q is negative semidefinite and always evaluates to either 0 or a negative number.

  6. Hamming (7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    In coding theory, Hamming(7,4) is a linear error-correcting code that encodes four bits of data into seven bits by adding three parity bits. It is a member of a larger family of Hamming codes , but the term Hamming code often refers to this specific code that Richard W. Hamming introduced in 1950.

  7. Positive-definite function - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_function

    Positive-definiteness arises naturally in the theory of the Fourier transform; it can be seen directly that to be positive-definite it is sufficient for f to be the Fourier transform of a function g on the real line with g(y) ≥ 0.

  8. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.

  9. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    For positive semidefinite A, an decomposition exists where the number of non-zero elements on the diagonal D is exactly the rank of A. [11] Some indefinite matrices for which no Cholesky decomposition exists have an LDL decomposition with negative entries in D : it suffices that the first n − 1 leading principal minors of A are non-singular.