Search results
Results from the WOW.Com Content Network
In heterogeneous electron transfer, an electron moves between a chemical species present in solution and the surface of a solid such as a semi-conducting material or an electrode. Theories addressing heterogeneous electron transfer have applications in electrochemistry and the design of solar cells.
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
This theory has largely been disproven by FT electron spectroscopy experiments that show electron absorption and transfer with an efficiency of above 99%, [61] which cannot be explained by classical mechanical models. Instead, as early as 1938, scientists theorized that quantum coherence was the mechanism for excitation-energy transfer.
Here, the electron transfer takes place as the iron remains in low spin but changes between the +2 and +3 oxidation states. Since the reduction potential of each step is slightly greater than the previous one, the energy is released step-by-step and can thus be stored in adenosine triphosphate.
Electron-transfer theories describe the influence of a variety of parameters on the rate of electron-transfer. All electrochemical reactions occur by this mechanism. Adiabatic electron-transfer theory stresses that intricately coupled to such charge transfer is the ability of any D-A system to absorb or emit light.
Outer sphere electron transfer can occur between chemical species that are identical except for their oxidation state. [4] This process is termed self-exchange. An example is the degenerate reaction between the tetrahedral ions permanganate and manganate:
Characterization of transport properties requires fabricating a device and measuring its current-voltage characteristics. Devices for transport studies are typically fabricated by thin film deposition or break junctions. The dominant transport mechanism in a measured device can be determined by differential conductance analysis.
Einstein–de Haas effect (science) Electro-optic effect (nonlinear optics) Electrocaloric effect (cooling technology) (heat pumps) Electron-cloud effect (particle accelerators) (physics) Electroviscous effects (colloid chemistry) (surface chemistry) ELIZA effect (artificial intelligence) (human–computer interaction) (propositional fallacies)