Search results
Results from the WOW.Com Content Network
The operator is said to be positive-definite, and written >, if , >, for all {}. [ 1 ] Many authors define a positive operator A {\displaystyle A} to be a self-adjoint (or at least symmetric) non-negative operator.
In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum ...
Let A and B be two Hermitian matrices of order n. We say that A ≥ B if A − B is positive semi-definite. Similarly, we say that A > B if A − B is positive definite. Although it is commonly discussed on matrices (as a finite-dimensional case), the Loewner order is also well-defined on operators (an infinite-dimensional case) in the ...
In the 2n 2-dimensional vector space of complex n × n matrices over ℝ, the complex Hermitian matrices form a subspace of dimension n 2. If E jk denotes the n -by- n matrix with a 1 in the j , k position and zeros elsewhere, a basis (orthonormal with respect to the Frobenius inner product) can be described as follows: E j j for 1 ≤ j ≤ n ...
Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).
In finite dimensions where operators can be represented by matrices, the Hermitian adjoint is given by the conjugate transpose (also known as the Hermitian transpose). The above definition of an adjoint operator extends verbatim to bounded linear operators on Hilbert spaces H {\displaystyle H} .
A form is called strongly positive if it is a linear combination of products of semi-positive forms, with positive real coefficients. A real (p, p) -form η {\displaystyle \eta } on an n -dimensional complex manifold M is called weakly positive if for all strongly positive (n-p, n-p) -forms ζ with compact support, we have ∫ M η ∧ ζ ≥ 0 ...
where λ i are real numbers, the eigenvalues of C Φ, and each V i corresponds to an eigenvector of C Φ. Unlike the completely positive case, C Φ may fail to be positive. Since Hermitian matrices do not admit factorizations of the form B*B in general, the Kraus representation is no longer possible for a given Φ.