Search results
Results from the WOW.Com Content Network
A possible null hypothesis is that the mean male score is the same as the mean female score: H 0: μ 1 = μ 2. where H 0 = the null hypothesis, μ 1 = the mean of population 1, and μ 2 = the mean of population 2. A stronger null hypothesis is that the two samples have equal variances and shapes of their respective distributions.
In this situation, if the estimated value exists in one of the one-sided critical areas, depending on the direction of interest (greater than or less than), the alternative hypothesis is accepted over the null hypothesis. Alternative names are one-sided and two-sided tests; the terminology "tail" is used because the extreme portions of ...
the exact sampling distribution of T under the null hypothesis is the binomial distribution with parameters 0.5 and 100. the value of T can be compared with its expected value under the null hypothesis of 50, and since the sample size is large, a normal distribution can be used as an approximation to the sampling distribution either for T or ...
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
First, estimate the expected value μ of T under the null hypothesis, and obtain an estimate s of the standard deviation of T. Second, determine the properties of T : one tailed or two tailed. For Null hypothesis H 0: μ≥μ 0 vs alternative hypothesis H 1: μ<μ 0, it is lower/left-tailed (one tailed).
In statistical hypothesis testing, the alternative hypothesis is one of the proposed propositions in the hypothesis test. In general the goal of hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of alternative hypothesis instead of the exclusive proposition in the test (null hypothesis). [1]
Equivalence tests are a variety of hypothesis tests used to draw statistical inferences from observed data. In these tests, the null hypothesis is defined as an effect large enough to be deemed interesting, specified by an equivalence bound. The alternative hypothesis is any effect that is less extreme than said equivalence bound.
Null distribution is a tool scientists often use when conducting experiments. The null distribution is the distribution of two sets of data under a null hypothesis. If the results of the two sets of data are not outside the parameters of the expected results, then the null hypothesis is said to be true. Null and alternative distribution