Search results
Results from the WOW.Com Content Network
Turtle graphics are often associated with the Logo programming language. [2] Seymour Papert added support for turtle graphics to Logo in the late 1960s to support his version of the turtle robot, a simple robot controlled from the user's workstation that is designed to carry out the drawing functions assigned to it using a small retractable pen set into or attached to the robot's body.
The curve that has a catacaustic forming a circle. Approximates the Archimedean spiral. [11] Atomic spiral: 2002 = This spiral has two asymptotes; one is the circle of radius 1 and the other is the line = [12] Galactic spiral: 2019
The first working Logo turtle robot was created in 1969. A display turtle preceded the physical floor turtle. Modern Logo has not changed very much from the basic concepts predating the first turtle. The first turtle was a tethered floor roamer, not radio-controlled or wireless. At BBN Paul Wexelblat developed a turtle named Irving that had ...
Let φ 1 = 0, φ 2 = 2π; then the area of the black region (see diagram) is A 0 = a 2 π 2, which is half of the area of the circle K 0 with radius r(2π). The regions between neighboring curves (white, blue, yellow) have the same area A = 2a 2 π 2. Hence: The area between two arcs of the spiral after a full turn equals the area of the circle ...
An Archimedean spiral is, for example, generated while coiling a carpet. [5] A hyperbolic spiral appears as image of a helix with a special central projection (see diagram). A hyperbolic spiral is some times called reciproke spiral, because it is the image of an Archimedean spiral with a circle-inversion (see below). [6]
First six iterations of the Hilbert curve. The Hilbert curve (also known as the Hilbert space-filling curve) is a continuous fractal space-filling curve first described by the German mathematician David Hilbert in 1891, [1] as a variant of the space-filling Peano curves discovered by Giuseppe Peano in 1890.
The stable, left half s-plane maps into the interior of the unit circle of the z-plane, with the s-plane origin equating to |z| = 1 (because e 0 = 1). A diagonal line of constant damping in the s-plane maps around a spiral from (1,0) in the z plane as it curves in toward the origin.
The problem addressed by the circle method is to force the issue of taking r = 1, by a good understanding of the nature of the singularities f exhibits on the unit circle. The fundamental insight is the role played by the Farey sequence of rational numbers, or equivalently by the roots of unity :