Search results
Results from the WOW.Com Content Network
Iodine-131 (131 I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Mentions of radioiodine in health care contexts refer more often to iodine-131 than to other isotopes. Of the many isotopes of iodine, only two are typically used in a medical setting: iodine-123 and iodine-131. Since 131 I has both a beta and gamma decay mode, it can be used for radiotherapy or for imaging.
Source of much of the decay heat together with 137 Cs on the timespan of years to decades after irradiation. Formerly used in radioisotope thermoelectric generators. 2.8336%: Iodine: 131 I: 8.02 d: Reason for the use of potassium iodide tablets after nuclear accidents or nuclear bomb explosions. 2.2713%: Promethium: 147 Pm: 2.62 y
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods include jumping up and down make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
The higher the affinity of the molecule the more radioligand is displaced from the binding site and the increasing radioactive decay can be measured by scintillography. This assay is commonly used to calculate binding constant of molecules to receptors. Due to the probable injuries of PET-radiotracers, they could not be administered in the ...
The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E . If A is the radioactive activity , i.e. the number of transforming atoms per time, M the molar mass, then the radiation power P is:
Iodine-125 (125 I) is a radioisotope of iodine which has uses in biological assays, nuclear medicine imaging and in radiation therapy as brachytherapy to treat a number of conditions, including prostate cancer, uveal melanomas, and brain tumors. It is the second longest-lived radioisotope of iodine, after iodine-129.