Search results
Results from the WOW.Com Content Network
Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F. Every vector space over F contains a subspace isomorphic to this one. The zero vector space is conceptually different from the null space of a linear operator L, which is the kernel of L.
If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.
A linear subspace is a vector space for the induced addition and scalar multiplication; this means that the closure property implies that the axioms of a vector space are satisfied. [11] The closure property also implies that every intersection of linear subspaces is a linear subspace. [11] Linear span
The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...
A subspace is Lagrangian if and only if it is both isotropic and coisotropic. In a finite-dimensional vector space, a Lagrangian subspace is an isotropic one whose dimension is half that of V. Every isotropic subspace can be extended to a Lagrangian one. Referring to the canonical vector space R 2n above, the subspace spanned by {x 1, y 1} is ...
Formally, the construction is as follows. [1] Let be a vector space over a field, and let be a subspace of .We define an equivalence relation on by stating that iff .That is, is related to if and only if one can be obtained from the other by adding an element of .
Linear subspace, in linear algebra, a subset of a vector space that is closed under addition and scalar multiplication; Flat (geometry), a Euclidean subspace; Affine subspace, a geometric structure that generalizes the affine properties of a flat; Projective subspace, a geometric structure that generalizes a linear subspace of a vector space
It is homogeneous. An affine space need not be included into a linear space, but is isomorphic to an affine subspace of a linear space. All n-dimensional affine spaces over a given field are mutually isomorphic. In the words of John Baez, "an affine space is a vector space that's forgotten its origin". In particular, every linear space is also ...