Search results
Results from the WOW.Com Content Network
The topological real projective plane can be constructed by taking the (single) edge of a Möbius strip and gluing it to itself in the correct direction, or by gluing the edge to a disk. Alternately, the real projective plane can be constructed by identifying each pair of opposite sides of the square, but in opposite directions, as shown in the ...
The archetypical example is the real projective plane, also known as the extended Euclidean plane. [1] This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by PG(2, R), RP 2, or P 2 (R), among other notations.
Notes based on Coxeter's The Real Projective Plane. Projective Geometry for Image Analysis — free tutorial by Roger Mohr and Bill Triggs. Projective Geometry. — free tutorial by Tom Davis. The Grassmann method in projective geometry A compilation of three notes by Cesare Burali-Forti on the application of exterior algebra to projective geometry
The real line with the point at infinity; it is called the real projective line. In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane.
The elliptic plane is the real projective plane provided with a metric. Kepler and Desargues used the gnomonic projection to relate a plane σ to points on a hemisphere tangent to it. With O the center of the hemisphere, a point P in σ determines a line OP intersecting the hemisphere, and any line L ⊂ σ determines a plane OL which ...
The Fano plane. This particular projective plane is sometimes called the Fano plane. If any of the lines is removed from the plane, along with the points on that line, the resulting geometry is the affine plane of order 2. The Fano plane is called the projective plane of order 2 because it is unique (up to
Gleason called any projective plane satisfying this condition a Fano plane thus creating some confusion with modern terminology. To compound the confusion, Fano's axiom states that the diagonal points of a complete quadrangle are never collinear, a condition that holds in the Euclidean and real projective planes. Thus, what Gleason called Fano ...
In geometry, smooth projective planes are special projective planes.The most prominent example of a smooth projective plane is the real projective plane.Its geometric operations of joining two distinct points by a line and of intersecting two lines in a point are not only continuous but even smooth (infinitely differentiable =).