Search results
Results from the WOW.Com Content Network
For example, if applied to 8-bit image displayed with 8-bit gray-scale palette it will further reduce color depth (number of unique shades of gray) of the image. Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images.
The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2] It is possible to use histogram matching to balance detector responses as a relative detector calibration technique. It can be used to normalize two images, when the images were acquired at the same local illumination ...
Adaptive histogram equalization (AHE) is a computer image processing technique used to improve contrast in images. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image.
The YIQ representation is sometimes employed in color image processing transformations. For example, applying a histogram equalization directly to the channels in an RGB image would alter the color balance of the image. Instead, the histogram equalization is applied to the Y channel of the YIQ or YUV representation of the image, which only ...
Like Otsu's Method [2] and the Iterative Selection Thresholding Method, [3] this is a histogram based thresholding method. This approach assumes that the image is divided in two main classes: The background and the foreground. The BHT method tries to find the optimum threshold level that divides the histogram in two classes. Original image ...
Histogram equalization is a popular example of these algorithms. Improvements in picture brightness and contrast can thus be obtained. In the field of computer vision, image histograms can be useful tools for thresholding. Because the information contained in the graph is a representation of pixel distribution as a function of tonal variation ...
It refers to a class of image transforms which aims to obtain images of which the histograms have a desired shape. [2] As specified, firstly it is necessary to convert the image so that it has a particular histogram. Assume an image x. The following formula is the equalization transform of this image:
Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram. Volume Local Binary Pattern(VLBP): [11] VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood ...