Search results
Results from the WOW.Com Content Network
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
The red oval is the event that a number is odd, and the blue oval is the event that a number is prime. A sample space can be represented visually by a rectangle, with the outcomes of the sample space denoted by points within the rectangle. The events may be represented by ovals, where the points enclosed within the oval make up the event. [12]
Compound distributions are useful for modeling outcomes exhibiting overdispersion, i.e., a greater amount of variability than would be expected under a certain model. For example, count data are commonly modeled using the Poisson distribution , whose variance is equal to its mean.
The mutually exclusive event {5} has a probability of 1/6, and the event {1,2,3,4,5,6} has a probability of 1, that is, absolute certainty. When doing calculations using the outcomes of an experiment, it is necessary that all those elementary events have a number assigned to them. This is done using a random variable.
The event that contains all possible outcomes of an experiment is its sample space. A single outcome can be a part of many different events. [4] Typically, when the sample space is finite, any subset of the sample space is an event (that is, all elements of the power set of the sample space are defined as
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.
A random experiment that has exactly two (mutually exclusive) possible outcomes is known as a Bernoulli trial. [2] When an experiment is conducted, one (and only one) outcome results— although this outcome may be included in any number of events, all of which would be said to have occurred
Here, an "event" is a set of zero or more outcomes; that is, a subset of the sample space. An event is considered to have "happened" during an experiment when the outcome of the latter is an element of the event. Since the same outcome may be a member of many events, it is possible for many events to have happened given a single outcome.