Search results
Results from the WOW.Com Content Network
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle.Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2]
The sum of the angles of a spherical triangle is not equal to 180°. A sphere is a curved surface, but locally the laws of the flat (planar) Euclidean geometry are ...
For a sphere in a fluid, the characteristic length-scale is the diameter of the sphere and the characteristic velocity is that of the sphere relative to the fluid some distance away from the sphere, such that the motion of the sphere does not disturb that reference parcel of fluid. The density and viscosity are those belonging to the fluid. [23]
Selection of the characteristic length should be in the direction of growth (or thickness) of the boundary layer; some examples of characteristic length are: the outer diameter of a cylinder in (external) cross flow (perpendicular to the cylinder axis), the length of a vertical plate undergoing natural convection, or the diameter of a sphere ...
L is a characteristic length (m) D is mass diffusivity (m 2 s −1) h is the convective mass transfer film coefficient (m s −1) Using dimensional analysis, it can also be further defined as a function of the Reynolds and Schmidt numbers: = (,)
L = characteristic length of robot, U = characteristic speed. The analysis of a microrobot using the Strouhal number allows one to assess the impact that the motion of the fluid it is in has on its motion in relation to the inertial forces acting on the robot–regardless of the dominant forces being elastic or not.
The Knudsen number is a dimensionless number defined as =, where = mean free path [L 1], = representative physical length scale [L 1].. The representative length scale considered, , may correspond to various physical traits of a system, but most commonly relates to a gap length over which thermal transport or mass transport occurs through a gas phase.