enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    It is easy to see that the complexity class P (all problems solvable, deterministically, in polynomial time) is contained in NP (problems where solutions can be verified in polynomial time), because if a problem is solvable in polynomial time, then a solution is also verifiable in polynomial time by simply solving the problem.

  3. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    For example, if a system contains , a system over the rational numbers is obtained by adding the equation r 2 22 = 0 and replacing by r 2 in the other equations. In the case of a finite field, the same transformation allows always supposing that the field k has a prime order.

  4. Graph isomorphism problem - Wikipedia

    en.wikipedia.org/wiki/Graph_isomorphism_problem

    As is common for complexity classes within the polynomial time hierarchy, a problem is called GI-hard if there is a polynomial-time Turing reduction from any problem in GI to that problem, i.e., a polynomial-time solution to a GI-hard problem would yield a polynomial-time solution to the graph isomorphism problem (and so all problems in GI).

  5. Algebraic variety - Wikipedia

    en.wikipedia.org/wiki/Algebraic_variety

    For example, in Chapter 1 of Hartshorne a variety over an algebraically closed field is defined to be a quasi-projective variety, [1]: 15 but from Chapter 2 onwards, the term variety (also called an abstract variety) refers to a more general object, which locally is a quasi-projective variety, but when viewed as a whole is not necessarily quasi ...

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    In mathematics, a polynomial is a mathematical expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms.

  7. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    A problem is polynomial-time Turing-reducible to a problem if, given a subroutine that solves in polynomial time, one could write a program that calls this subroutine and solves in polynomial time. This contrasts with many-one reducibility, which has the restriction that the program can only call the subroutine once, and the return value of the ...

  8. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    Given a solution to the SubsetSumPositive instance, adding the −T yields a solution to the SubsetSumZero instance. Conversely, given a solution to the SubsetSumZero instance, it must contain the − T (since all integers in S are positive), so to get a sum of zero, it must also contain a subset of S with a sum of + T , which is a solution of ...

  9. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.