enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    While the notation f −1 (x) might be misunderstood, [1] (f(x)) −1 certainly denotes the multiplicative inverse of f(x) and has nothing to do with the inverse function of f. [6] The notation might be used for the inverse function to avoid ambiguity with the multiplicative inverse. [7]

  3. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    The inverse function theorem can also be generalized to differentiable maps between Banach spaces X and Y. [20] Let U be an open neighbourhood of the origin in X and F : U → Y {\displaystyle F:U\to Y\!} a continuously differentiable function, and assume that the Fréchet derivative d F 0 : X → Y {\displaystyle dF_{0}:X\to Y\!} of F at 0 is ...

  4. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  5. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : XX that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.

  6. Integral of inverse functions - Wikipedia

    en.wikipedia.org/wiki/Integral_of_inverse_functions

    It follows from the intermediate value theorem that is strictly monotone. Consequently, f {\displaystyle f} maps intervals to intervals, so is an open map and thus a homeomorphism. Since f {\displaystyle f} and the inverse function f − 1 : I 2 → I 1 {\displaystyle f^{-1}:I_{2}\to I_{1}} are continuous, they have antiderivatives by the ...

  7. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    If the assertions about analyticity are omitted, the formula is also valid for formal power series and can be generalized in various ways: It can be formulated for functions of several variables; it can be extended to provide a ready formula for F(g(z)) for any analytic function F; and it can be generalized to the case ′ =, where the inverse ...

  8. Multivalued function - Wikipedia

    en.wikipedia.org/wiki/Multivalued_function

    defined as Γ f, viewed as a subset of X × Y. When f is a differentiable function between manifolds, the inverse function theorem gives conditions for this to be single-valued locally in X. For example, the complex logarithm log(z) is the multivalued inverse of the exponential function e z : C → C ×, with graph

  9. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    An element y is called (simply) an inverse of x if xyx = x and y = yxy. Every regular element has at least one inverse: if x = xzx then it is easy to verify that y = zxz is an inverse of x as defined in this section. Another easy to prove fact: if y is an inverse of x then e = xy and f = yx are idempotents, that is ee = e and ff = f.