Search results
Results from the WOW.Com Content Network
An illustration that shows how antigens induce the immune system response by interacting with an antibody that matches the molecular structure of an antigen. In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. [1]
Antigen presentation stimulates immature T cells to become either mature "cytotoxic" CD8+ cells or mature "helper" CD4+ cells. An antigen-presenting cell (APC) or accessory cell is a cell that displays an antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation.
The first correct description of the antigen-antibody reaction was given by Richard J. Goldberg at the University of Wisconsin in 1952. [1] [2] It came to be known as "Goldberg's theory" (of antigen-antibody reaction). [3] There are several types of antibodies and antigens, and each antibody is capable of binding only to a specific antigen.
However, strictly speaking, immunogenicity refers to the ability of an antigen to induce an adaptive immune response. Thus an antigen might bind specifically to a T or B cell receptor, but not induce an adaptive immune response. If the antigen does induce a response, it is an 'immunogenic antigen', which is referred to as an immunogen.
An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells.The part of an antibody that binds to the epitope is called a paratope.
Each antibody binds to a specific antigen in a highly specific interaction analogous to a lock and key.. An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as bacteria and viruses, including those that cause disease.
The same cells that recognize PAMPs on microbial pathogens may bind to the antigen of a foreign blood cell and recognize it as a pathogen because the antigen is unfamiliar. [11] It is not easy to classify red blood cell recognition as intrinsic or extrinsic, as a foreign cell may be recognized as part of the organism if it has the right antigens.
Antigen presentation is a vital immune process that is essential for T cell immune response triggering. Because T cells recognize only fragmented antigens displayed on cell surfaces, antigen processing must occur before the antigen fragment can be recognized by a T-cell receptor.