Search results
Results from the WOW.Com Content Network
Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...
In computer science, iterative deepening search or more specifically iterative deepening depth-first search [1] (IDS or IDDFS) is a state space/graph search strategy in which a depth-limited version of depth-first search is run repeatedly with increasing depth limits until the goal is found.
MTD(f) is an alpha-beta game tree search algorithm modified to use ‘zero-window’ initial search bounds, and memory (usually a transposition table) to reuse intermediate search results. MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. [ 1 ]
In essence, fringe search is a middle ground between A* and the iterative deepening A* variant (IDA*). If g(x) is the cost of the search path from the first node to the current, and h(x) is the heuristic estimate of the cost from the current node to the goal, then ƒ(x) = g(x) + h(x), and h* is the actual path cost to the goal.
State space search is a process used in the field of computer science, including artificial intelligence (AI), in which successive configurations or states of an instance are considered, with the intention of finding a goal state with the desired property.
In the artificial intelligence mode of analysis, with a branching factor greater than one, iterative deepening increases the running time by only a constant factor over the case in which the correct depth limit is known due to the geometric growth of the number of nodes per level. DFS may also be used to collect a sample of graph nodes.
Also, listed below is pseudocode for a simple queue based level-order traversal, and will require space proportional to the maximum number of nodes at a given depth. This can be as much as half the total number of nodes. A more space-efficient approach for this type of traversal can be implemented using an iterative deepening depth-first search.
Note. — If each vertex in a graph is to be traversed by a tree-based algorithm (such as DFS or BFS), then the algorithm must be called at least once for each connected component of the graph. This is easily accomplished by iterating through all the vertices of the graph, performing the algorithm on each vertex that is still unvisited when ...