enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electric current - Wikipedia

    en.wikipedia.org/wiki/Electric_current

    A flow of positive charges gives the same electric current, and has the same effect in a circuit, as an equal flow of negative charges in the opposite direction. Since current can be the flow of either positive or negative charges, or both, a convention is needed for the direction of current that is independent of the type of charge carriers ...

  3. Norton's theorem - Wikipedia

    en.wikipedia.org/wiki/Norton's_theorem

    In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.

  4. Electricity - Wikipedia

    en.wikipedia.org/wiki/Electricity

    These terms refer to how the current varies in time. Direct current, as produced by example from a battery and required by most electronic devices, is a unidirectional flow from the positive part of a circuit to the negative. [46]: 11 If, as is most common, this flow is carried by electrons, they will be travelling in the opposite direction.

  5. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    On the far side of the figure, the return current flows from the rotating arm through the far side of the rim to the bottom brush. The B-field induced by this return current opposes the applied B-field, tending to decrease the flux through that side of the circuit, opposing the increase in flux due to rotation. On the near side of the figure ...

  6. Series and parallel circuits - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_circuits

    In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [1] In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents flowing through each ...

  7. Millman's theorem - Wikipedia

    en.wikipedia.org/wiki/Millman's_theorem

    In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel. It is named after Jacob Millman, who proved the theorem.

  8. Kirchhoff's circuit laws - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_circuit_laws

    The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:

  9. Oersted's law - Wikipedia

    en.wikipedia.org/wiki/Oersted's_law

    This was discovered on 21 April 1820 by Danish physicist Hans Christian Ørsted (1777–1851), [3] [4] when he noticed that the needle of a compass next to a wire carrying current turned so that the needle was perpendicular to the wire. Ørsted investigated and found the physical law describing the magnetic field, now known as Ørsted's law.