enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  3. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/.../Tangent_half-angle_substitution

    The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution, [6] and also known by variant names such as half-tangent substitution or half-angle substitution.

  4. Euler substitution - Wikipedia

    en.wikipedia.org/wiki/Euler_substitution

    The substitutions of Euler can be generalized by allowing the use of imaginary numbers. For example, in the integral +, the substitution + = + can be used. Extensions to the complex numbers allows us to use every type of Euler substitution regardless of the coefficients on the quadratic.

  5. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.

  6. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:

  7. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    Most of these techniques rewrite one integral as a different one which is hopefully more tractable. Techniques include integration by substitution, integration by parts, integration by trigonometric substitution, and integration by partial fractions. Alternative methods exist to compute more complex integrals.

  8. Cialis Side Effects: What to Expect (& How to Avoid Them) - AOL

    www.aol.com/cialis-side-effects-expect-avoid...

    But because daily-use Cialis is prescribed at a lower dosage, some side effects appear less common and are generally less severe. For instance, in clinical trials, 11 to 15 percent of men reported ...

  9. Feynman parametrization - Wikipedia

    en.wikipedia.org/wiki/Feynman_parametrization

    If A(p) and B(p) are linear functions of p, then the last integral can be evaluated using substitution. More generally, using the Dirac delta function δ {\displaystyle \delta } : [ 2 ]