enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Splitting field - Wikipedia

    en.wikipedia.org/wiki/Splitting_field

    Finding roots of polynomials has been an important problem since the time of the ancient Greeks. Some polynomials, however, such as x 2 + 1 over R, the real numbers, have no roots. By constructing the splitting field for such a polynomial one can find the roots of the polynomial in the new field.

  3. Splitting circle method - Wikipedia

    en.wikipedia.org/wiki/Splitting_circle_method

    In mathematics, the splitting circle method is a numerical algorithm for the numerical factorization of a polynomial and, ultimately, for finding its complex roots.It was introduced by Arnold Schönhage in his 1982 paper The fundamental theorem of algebra in terms of computational complexity (Technical report, Mathematisches Institut der Universität Tübingen).

  4. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q ( x ) is simply the quotient obtained from the division process; since r is known to be a root of P ( x ), it is known that the remainder must be zero.

  5. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    So, except for very low degrees, root finding of polynomials consists of finding approximations of the roots. By the fundamental theorem of algebra, a polynomial of degree n has exactly n real or complex roots counting multiplicities. It follows that the problem of root finding for polynomials may be split in three different subproblems;

  6. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.

  7. Split exact sequence - Wikipedia

    en.wikipedia.org/wiki/Split_exact_sequence

    A short exact sequence of abelian groups or of modules over a fixed ring, or more generally of objects in an abelian category. is called split exact if it is isomorphic to the exact sequence where the middle term is the direct sum of the outer ones:

  8. Radical polynomial - Wikipedia

    en.wikipedia.org/wiki/Radical_polynomial

    The standard separation of variables theorem asserts that every polynomial can be expressed as a finite sum of terms, each term being a product of a radical polynomial and a harmonic polynomial. This is equivalent to the statement that the ring of all polynomials is a free module over the ring of radical polynomials.

  9. Multilinear polynomial - Wikipedia

    en.wikipedia.org/wiki/Multilinear_polynomial

    In algebra, a multilinear polynomial [1] is a multivariate polynomial that is linear (meaning affine) in each of its variables separately, but not necessarily simultaneously. It is a polynomial in which no variable occurs to a power of 2 {\displaystyle 2} or higher; that is, each monomial is a constant times a product of distinct variables.