Search results
Results from the WOW.Com Content Network
Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining millions or billions of MOS transistors onto a single chip. VLSI began in the 1970s when MOS integrated circuit (metal oxide semiconductor) chips were developed and then widely adopted, enabling complex semiconductor and telecommunications technologies.
The VLSI Project was a DARPA-program initiated by Robert Kahn in 1978 [1] that provided research funding to a wide variety of university-based teams in an effort to improve the state of the art in microprocessor design, then known as Very Large Scale Integration (VLSI).
The Mead–Conway VLSI chip design revolution, or Mead and Conway revolution, was a very-large-scale integration design revolution starting in 1978 which resulted in a worldwide restructuring of academic materials in computer science and electrical engineering education, and was paramount for the development of industries based on the application of microelectronics.
In semiconductor design, standard-cell methodology is a method of designing application-specific integrated circuits (ASICs) with mostly digital-logic features. Standard-cell methodology is an example of design abstraction, whereby a low-level very-large-scale integration layout is encapsulated into an abstract logic representation (such as a NAND gate).
It is a binary file format representing planar geometric shapes, text labels, and other information about the layout in hierarchical form (two-dimensional/2D CAD file format). The data can be used to reconstruct all or part of the artwork to be used in sharing layouts, transferring artwork between different tools, or creating photomasks .
The micro-architecture is a step closer to the hardware. It implements the architecture and defines specific mechanisms and structures for achieving that implementation. The result of the micro-architecture phase is a micro-architecture specification which describes the methods used to implement the architecture.
Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), [1] is a category of software tools for designing electronic systems such as integrated circuits and printed circuit boards. The tools work together in a design flow that chip designers use to design and analyze entire semiconductor chips.
The final design, named RISC I, was published in Association for Computing Machinery (ACM) International Symposium on Computer Architecture (ISCA) in 1981. It had 44,500 transistors implementing 31 instructions and a register file containing 78 32-bit registers. This allowed for six register windows containing 14 registers.