Search results
Results from the WOW.Com Content Network
Crystal growth is achieved by the further addition of folded polymer chain segments and only occurs for temperatures below the melting temperature T m and above the glass transition temperature T g. Higher temperatures destroy the molecular arrangement and below the glass transition temperature, the movement of molecular chains is frozen. [ 6 ]
Some polymer solutions also have a lower critical solution temperature (LCST) or lower bound to a temperature range of partial miscibility. As shown in the diagram, for polymer solutions the LCST is higher than the UCST, so that there is a temperature interval of complete miscibility, with partial miscibility at both higher and lower temperatures.
Polymers have both a melting temperature T m and a glass transition temperature T g. Above the T m, the polymer chains lose their molecular ordering and exhibit reptation, or mobility. Below the T m, but still above the T g, the polymer chains lose some of their long-range mobility and can form either crystalline or amorphous regions. In this ...
A common practice is to cool the solutions by flash evaporation: when a liquid at a given T 0 temperature is transferred in a chamber at a pressure P 1 such that the liquid saturation temperature T 1 at P 1 is lower than T 0, the liquid will release heat according to the temperature difference and a quantity of solvent, whose total latent heat ...
Crystal growth is a major stage of a crystallization process, and consists of the addition of new atoms, ions, or polymer strings into the characteristic arrangement of the crystalline lattice. [ 1 ] [ 2 ] The growth typically follows an initial stage of either homogeneous or heterogeneous (surface catalyzed) nucleation , unless a "seed ...
The percent crystalline content of a polymer can be estimated from the crystallization/melting peaks of the DSC graph using reference heats of fusion found in the literature. [25] DSC can also be used to study thermal degradation of polymers using an approach such as Oxidative Onset Temperature/Time (OOT); however, the user risks contamination ...
Polymer morphology is a microscale property that is largely dictated by the amorphous or crystalline portions of the polymer chains and their influence on each other. Microscopy techniques are especially useful in determining these microscale properties, as the domains created by the polymer morphology are large enough to be viewed using modern ...
In addition, by changing the alignment of the monomer within the crystal, the tacticity/stereochemistry of the polymer product could be easily controlled. An intuitive example is shown in the figure. In topochemical polymerization of 1,3-diene carboxylic acid derivatives, polymers with four different configurations can be prepared. Their ...