Search results
Results from the WOW.Com Content Network
Bytecode (also called portable code or p-code) is a form of instruction set designed for efficient execution by a software interpreter.Unlike human-readable [1] source code, bytecodes are compact numeric codes, constants, and references (normally numeric addresses) that encode the result of compiler parsing and performing semantic analysis of things like type, scope, and nesting depths of ...
Threaded code interpreters are similar to bytecode interpreters but instead of bytes they use pointers. Each "instruction" is a word that points to a function or an instruction sequence, possibly followed by a parameter.
This is a list of the instructions that make up the Java bytecode, an abstract machine language that is ultimately executed by the Java virtual machine. [1] The Java bytecode is generated from languages running on the Java Platform, most notably the Java programming language.
Java bytecode is used at runtime either interpreted by a JVM or compiled to machine code via just-in-time (JIT) compilation and run as a native application. As Java bytecode is designed for a cross-platform compatibility and security, a Java bytecode application tends to run consistently across various hardware and software configurations. [3]
CPython can be defined as both an interpreter and a compiler as it compiles Python code into bytecode before interpreting it. It has a foreign function interface with several languages, including C, in which one must explicitly write bindings in a language other than Python.
A virtual machine is a special type of interpreter that interprets bytecode. [2] Bytecode is a portable low-level code similar to machine code, though it is generally executed on a virtual machine instead of a physical machine. [4]
When a computer has a Java bytecode interpreter, it can run any Java bytecode program, and the same program can be run on any computer that has such an interpreter. When Java bytecode is executed by an interpreter, the execution will always be slower than the execution of the same program compiled into native machine language. This problem is ...
This separation makes it possible to detach the development of a P-code interpreter from the underlying machine code compiler, which has to consider machine-dependent behaviour in generating its bytecode. This way a P-code interpreter can also be implemented quicker, and the ability to interpret the code at runtime allows for additional run ...