Search results
Results from the WOW.Com Content Network
The linear eccentricity of an ellipse or hyperbola, denoted c (or sometimes f or e), is the distance between its center and either of its two foci. The eccentricity can be defined as the ratio of the linear eccentricity to the semimajor axis a : that is, e = c a {\displaystyle e={\frac {c}{a}}} (lacking a center, the linear eccentricity for ...
A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.
An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.
The prolate spheroidal coordinates are produced by rotating the elliptic coordinates about the -axis, i.e., the axis connecting the foci, whereas the oblate spheroidal coordinates are produced by rotating the elliptic coordinates about the -axis, i.e., the axis separating the foci.
The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge.
(See Ellipse § Definition as locus of points and Hyperbola § As locus of points.) The foci F 1 , F 2 {\displaystyle F_{1},\,F_{2}} thus determine two pencils of confocal ellipses and hyperbolas. By the principal axis theorem , the plane admits a Cartesian coordinate system with its origin at the midpoint between foci and its axes aligned with ...
Intersecting with the line at infinity, each conic section has two points at infinity. If these points are real, the curve is a hyperbola; if they are imaginary conjugates, it is an ellipse; if there is only one double point, it is a parabola. If the points at infinity are the cyclic points [1: i: 0] and [1: –i: 0], the conic section is a circle.
The distance of closest approach is sometimes referred to as the contact distance. For the simplest objects, spheres, the distance of closest approach is simply the sum of their radii. For non-spherical objects, the distance of closest approach is a function of the orientation of the objects, and its calculation can be difficult.