Search results
Results from the WOW.Com Content Network
There are two reasons actual sales can vary from planned sales: either the volume sold varied from the expected quantity, known as sales volume variance, or the price point at which units were sold differed from the expected price points, known as sales price variance. Both scenarios could also simultaneously contribute to the variance.
Variance analysis can be carried out for both costs and revenues. Variance analysis is usually associated with explaining the difference (or variance) between actual costs and the standard costs allowed for the good output. For example, the difference in materials costs can be divided into a materials price variance and a materials usage variance.
For a set of numbers {10, 15, 30, 45, 57, 52 63, 72, 81, 93, 102, 105}, if this set is the whole data population for some measurement, then variance is the population variance 932.743 as the sum of the squared deviations about the mean of this set, divided by 12 as the number of the set members.
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
Absolute deviation in statistics is a metric that measures the overall difference between individual data points and a central value, typically the mean or median of a dataset. It is determined by taking the absolute value of the difference between each data point and the central value and then averaging these absolute differences. [4]
The maximum variance of this distribution is 0.25, which occurs when the true parameter is p = 0.5. In practical applications, where the true parameter p is unknown, the maximum variance is often employed for sample size assessments. If a reasonable estimate for p is known the quantity () may be used in place of 0.25.
In statistics, explained variation measures the proportion to which a mathematical model accounts for the variation of a given data set.Often, variation is quantified as variance; then, the more specific term explained variance can be used.
In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean.The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling.