enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stopping time - Wikipedia

    en.wikipedia.org/wiki/Stopping_time

    Example of a stopping time: a hitting time of Brownian motion.The process starts at 0 and is stopped as soon as it hits 1. In probability theory, in particular in the study of stochastic processes, a stopping time (also Markov time, Markov moment, optional stopping time or optional time [1]) is a specific type of “random time”: a random variable whose value is interpreted as the time at ...

  3. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .

  4. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Usually the term "Markov chain" is reserved for a process with a discrete set of times, that is, a discrete-time Markov chain (DTMC), [11] but a few authors use the term "Markov process" to refer to a continuous-time Markov chain (CTMC) without explicit mention.

  5. Markov renewal process - Wikipedia

    en.wikipedia.org/wiki/Markov_renewal_process

    A semi-Markov process (defined in the above bullet point) in which all the holding times are exponentially distributed is called a continuous-time Markov chain. In other words, if the inter-arrival times are exponentially distributed and if the waiting time in a state and the next state reached are independent, we have a continuous-time Markov ...

  6. Markov Chains and Mixing Times - Wikipedia

    en.wikipedia.org/wiki/Markov_Chains_and_Mixing_Times

    A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains, their stationary distributions and mixing times, and methods for determining whether Markov chains are rapidly or slowly mixing. [1] [4]

  7. Optional stopping theorem - Wikipedia

    en.wikipedia.org/wiki/Optional_stopping_theorem

    Suppose further that the walk stops if it reaches 0 or m ≥ a; the time at which this first occurs is a stopping time. If it is known that the expected time at which the walk ends is finite (say, from Markov chain theory), the optional stopping theorem predicts that the expected stop position is equal to the initial position a.

  8. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.

  9. Gauss–Markov process - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_process

    Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.