enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    For backpropagation, the activation as well as the derivatives () ′ (evaluated at ) must be cached for use during the backwards pass. The derivative of the loss in terms of the inputs is given by the chain rule; note that each term is a total derivative , evaluated at the value of the network (at each node) on the input x {\displaystyle x} :

  3. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    To find the right derivative, we again apply the chain rule, this time differentiating with respect to the total input to , : = () Note that the output of the j {\displaystyle j} th neuron, y j {\displaystyle y_{j}} , is just the neuron's activation function g {\displaystyle g} applied to the neuron's input h j {\displaystyle h_{j}} .

  4. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]

  5. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    In machine learning, the vanishing gradient problem is encountered when training neural networks with gradient-based learning methods and backpropagation. In such methods, during each training iteration, each neural network weight receives an update proportional to the partial derivative of the loss function with respect to the current weight. [1]

  6. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    This technique is used in stochastic gradient descent and as an extension to the backpropagation algorithms used to train artificial neural networks. [29] [30] In the direction of updating, stochastic gradient descent adds a stochastic property. The weights can be used to calculate the derivatives.

  7. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  8. AOL Mail

    mail.aol.com/?offerId=netscapeconnect-en-us

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    Automatic differentiation is a subtle and central tool to automatize the simultaneous computation of the numerical values of arbitrarily complex functions and their derivatives with no need for the symbolic representation of the derivative, only the function rule or an algorithm thereof is required [3] [4]. Auto-differentiation is thus neither ...