Search results
Results from the WOW.Com Content Network
An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
1 function Dijkstra(Graph, source): 2 3 for each vertex v in Graph.Vertices: 4 dist[v] ← INFINITY 5 prev[v] ← UNDEFINED 6 add v to Q 7 dist[source] ← 0 8 9 while Q is not empty: 10 u ← vertex in Q with minimum dist[u] 11 remove u from Q 12 13 for each neighbor v of u still in Q: 14 alt ← dist[u] + Graph.Edges(u, v) 15 if alt < dist[v ...
The primitive graph operations that the algorithm uses are to enumerate the vertices of the graph, to store data per vertex (if not in the graph data structure itself, then in some table that can use vertices as indices), to enumerate the out-neighbours of a vertex (traverse edges in the forward direction), and to enumerate the in-neighbours of a vertex (traverse edges in the backward ...
Input: A graph G and a starting vertex root of G. Output: Goal state.The parent links trace the shortest path back to root [9]. 1 procedure BFS(G, root) is 2 let Q be a queue 3 label root as explored 4 Q.enqueue(root) 5 while Q is not empty do 6 v := Q.dequeue() 7 if v is the goal then 8 return v 9 for all edges from v to w in G.adjacentEdges(v) do 10 if w is not labeled as explored then 11 ...
For external memory algorithms the external memory model by Aggarwal and Vitter [1] is used for analysis. A machine is specified by three parameters: M, B and D.M is the size of the internal memory, B is the block size of a disk and D is the number of parallel disks.
For graphs of even greater density (having at least |V| c edges for some c > 1), Prim's algorithm can be made to run in linear time even more simply, by using a d-ary heap in place of a Fibonacci heap. [10] [11] Demonstration of proof. In this case, the graph Y 1 = Y − f + e is already equal to Y. In general, the process may need to be repeated.
The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA) is a greedy algorithm that computes the maximum flow in a flow network.It is sometimes called a "method" instead of an "algorithm" as the approach to finding augmenting paths in a residual graph is not fully specified [1] or it is specified in several implementations with different running times. [2]