Search results
Results from the WOW.Com Content Network
The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]
Bohr calculated that a 1s orbital electron of a hydrogen atom orbiting at the Bohr radius of 0.0529 nm travels at nearly 1/137 the speed of light. [11] One can extend this to a larger element with an atomic number Z by using the expression v ≈ Z c 137 {\displaystyle v\approx {\frac {Zc}{137}}} for a 1s electron, where v is its radial velocity ...
The azimuthal quantum number was carried over from the Bohr model of the atom, and was posited by Arnold Sommerfeld. [11] The Bohr model was derived from spectroscopic analysis of atoms in combination with the Rutherford atomic model. The lowest quantum level was found to have an angular momentum of zero.
Neutral atoms of the chemical elements have the same term symbol for each column in the s-block and p-block elements, but differ in d-block and f-block elements where the ground-state electron configuration changes within a column, where exceptions to Hund's rules occur. Ground state term symbols for the chemical elements are given below.
Atomic orbitals are basic building blocks of the atomic orbital model (or electron cloud or wave mechanics model), a modern framework for visualizing submicroscopic behavior of electrons in matter. In this model, the electron cloud of an atom may be seen as being built up (in approximation) in an electron configuration that is a product of ...
Complementarity as a physical model derives from Niels Bohr's 1927 presentation in Como, Italy, at a scientific celebration of the work of Alessandro Volta 100 years previous. [ 4 ] : 103 Bohr's subject was complementarity, the idea that measurements of quantum events provide complementary information through seemingly contradictory results. [ 5 ]
The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [1]: 123 Thomson had discovered the electron through his work on cathode rays [2] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.
Matrix mechanics, on the other hand, came from the Bohr school, which was concerned with discrete energy states and quantum jumps. Bohr's followers did not appreciate physical models that pictured electrons as waves, or as anything at all. They preferred to focus on the quantities that were directly connected to experiments.