Search results
Results from the WOW.Com Content Network
Both pathways project in humans to the inferior frontal gyrus. The most established role of the auditory dorsal stream in primates is sound localization. In humans, the auditory dorsal stream in the left hemisphere is also responsible for speech repetition and articulation, phonological long-term encoding of word names, and verbal working memory.
This cortex area is the neural crux of hearing, and—in humans—language and music. The auditory cortex is divided into three separate parts: the primary, secondary, and tertiary auditory cortex. These structures are formed concentrically around one another, with the primary cortex in the middle and the tertiary cortex on the outside.
Pure-tone audiometry is the main hearing test used to identify hearing threshold levels of an individual, enabling determination of the degree, type and configuration of a hearing loss [1] [2] and thus providing a basis for diagnosis and management.
In an ascending pathway, various acoustic reflexes and sound localisation are regulated via relay stations. The impulse reaches the auditory cortical projections on the superior temporal gyrus, which is the auditosensory cortex. This is the first site of unprocessed recognition of sound.
This tonotopy then projects through the vestibulocochlear nerve and associated midbrain structures to the primary auditory cortex via the auditory radiation pathway. Throughout this radiation, organization is linear with relation to placement on the organ of Corti, in accordance to the best frequency response (that is, the frequency at which ...
Graph showing a typical Auditory Brainstem Response. The auditory brainstem response (ABR), also called brainstem evoked response audiometry (BERA) or brainstem auditory evoked potentials (BAEPs) or brainstem auditory evoked responses (BAERs) [1] [2] is an auditory evoked potential extracted from ongoing electrical activity in the brain and recorded via electrodes placed on the scalp.
The first diagram above shows the auditory filter centred on the signal and how some of the masker falls within that filter. This results in a low SNR. The second diagram shows the next filter along the basilar membrane, which is not centred on the signal but contains a substantial amount of that signal and less masker.
The two-streams hypothesis is a model of the neural processing of vision as well as hearing. [1] The hypothesis, given its initial characterisation in a paper by David Milner and Melvyn A. Goodale in 1992, argues that humans possess two distinct visual systems. [2]