enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    If the mass does not change with time, then the derivative acts only upon the velocity, and so the force equals the product of the mass and the time derivative of the velocity, which is the acceleration: [22] = =.

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  6. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    Light moves at a speed of 299,792,458 m/s, or 299,792.458 kilometres per second (186,282.397 mi/s), in a vacuum. The speed of light in vacuum (or ) is also the speed of all massless particles and associated fields in a vacuum, and it is the upper limit on the speed at which energy, matter, information or causation can travel. The speed of light ...

  7. Mass - Wikipedia

    en.wikipedia.org/wiki/Mass

    If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.

  8. Metre per second squared - Wikipedia

    en.wikipedia.org/wiki/Metre_per_second_squared

    Newton's second law states that force equals mass multiplied by acceleration. The unit of force is the newton (N), and mass has the SI unit kilogram (kg). One newton equals one kilogram metre per second squared. Therefore, the unit metre per second squared is equivalent to newton per kilogram, N·kg −1, or N/kg. [2]

  9. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    For an object in uniform circular motion, the net force acting on the object equals: [46] = ^, where is the mass of the object, is the velocity of the object and is the distance to the center of the circular path and ^ is the unit vector pointing in the radial direction outwards from the center. This means that the net force felt by the object ...