enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angle of attack - Wikipedia

    en.wikipedia.org/wiki/Angle_of_attack

    As the angle of attack increases further, the upper surface flow becomes more fully separated and the lift coefficient reduces further. [7] Above this critical angle of attack, the aircraft is said to be in a stall. A fixed-wing aircraft by definition is stalled at or above the critical angle of attack rather than at or below a particular airspeed.

  3. Forces on sails - Wikipedia

    en.wikipedia.org/wiki/Forces_on_sails

    Angle of attack is a function of both the craft's point of sail and how the sail is adjusted with respect to the apparent wind. [ 2 ] As the lift generated by a sail increases, so does lift-induced drag , which together with parasitic drag constitutes total drag, ( D ).

  4. Lift-induced drag - Wikipedia

    en.wikipedia.org/wiki/Lift-induced_drag

    An aircraft in slow flight at a high angle of attack will generate an aerodynamic reaction force with a high drag component. By increasing the speed and reducing the angle of attack, the lift generated can be held constant while the drag component is reduced. At the optimum angle of attack, total drag is minimised.

  5. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    Coefficients of lift and drag against angle of attack. Curve showing induced drag, parasitic drag and total drag as a function of airspeed. Drag curve for the NACA 63 3 618 airfoil, colour-coded as opposite plot. The significant aerodynamic properties of aircraft wings are summarised by two dimensionless quantities, the lift and drag ...

  6. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    angle of attack α: angle between the x w,y w-plane and the aircraft longitudinal axis and, among other things, is an important variable in determining the magnitude of the force of lift; When performing the rotations described earlier to obtain the body frame from the Earth frame, there is this analogy between angles: β, ψ (sideslip vs yaw)

  7. Longitudinal stability - Wikipedia

    en.wikipedia.org/wiki/Longitudinal_stability

    The force from the tail-plane is proportional to its angle of attack, including the effects of any elevator deflection and any adjustment the pilot has made to trim-out any stick force. In addition, the tail is located in the flow field of the main wing, and consequently experiences downwash, reducing its angle of attack.

  8. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a

  9. Aerodynamic center - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_center

    The aerodynamic center is the point at which the pitching moment coefficient for the airfoil does not vary with lift coefficient (i.e. angle of attack), making analysis simpler. [ 1 ] d C m d C L = 0 {\displaystyle {dC_{m} \over dC_{L}}=0} where C L {\displaystyle C_{L}} is the aircraft lift coefficient .