enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dedekind-infinite set - Wikipedia

    en.wikipedia.org/wiki/Dedekind-infinite_set

    A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers. [1] A simple example is , the set of natural numbers.

  3. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    A Dedekind domain can also be characterized in terms of homological algebra: an integral domain is a Dedekind domain if and only if it is a hereditary ring; that is, every submodule of a projective module over it is projective. Similarly, an integral domain is a Dedekind domain if and only if every divisible module over it is injective. [3]

  4. Structure theorem for finitely generated modules over a ...

    en.wikipedia.org/wiki/Structure_theorem_for...

    However, over a Dedekind domain the ideal class group is the only obstruction, and the structure theorem generalizes to finitely generated modules over a Dedekind domain with minor modifications. There is still a unique torsion part, with a torsionfree complement (unique up to isomorphism), but a torsionfree module over a Dedekind domain is no ...

  5. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    This algorithm takes a finite number of steps to reach a solution and smoothly improves its candidate solution as it goes (so it can find good approximate solutions when cut off at a reasonable number of iterations), but is very slow in practice, owing largely to the computation of the pseudoinverse ((A P) T A P) −1. [1]

  6. Arithmetic surface - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_surface

    In more detail, an arithmetic surface (over the Dedekind domain ) is a scheme with a morphism: with the following properties: is integral, normal, excellent, flat and of finite type over and the generic fiber is a non-singular, connected projective curve over () and for other in (),

  7. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    When S is finite, its completion is also finite, and has the smallest number of elements among all finite complete lattices containing S. [ 12 ] The partially ordered set S is join-dense and meet-dense in the Dedekind–MacNeille completion; that is, every element of the completion is a join of some set of elements of S , and is also the meet ...

  8. Dedekind number - Wikipedia

    en.wikipedia.org/wiki/Dedekind_number

    In mathematics, the Dedekind numbers are a rapidly growing sequence of integers named after Richard Dedekind, who defined them in 1897. [1] The Dedekind number M ( n ) {\displaystyle M(n)} is the number of monotone Boolean functions of n {\displaystyle n} variables.

  9. Arithmetic zeta function - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_zeta_function

    In mathematics, the arithmetic zeta function is a zeta function associated with a scheme of finite type over integers. The arithmetic zeta function generalizes the Riemann zeta function and Dedekind zeta function to higher dimensions. The arithmetic zeta function is one of the most-fundamental objects of number theory.