Search results
Results from the WOW.Com Content Network
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
The figure at the right shows a sector of a circle with radius 1. The sector is θ/(2 π) of the whole circle, so its area is θ/2. We assume here that θ < π /2. = = = = The area of triangle OAD is AB/2, or sin(θ)/2.
In the time before electronic calculators were available, this method was preferable to an application of the law of cosines c = √ a 2 + b 2 − 2ab cos γ, as this latter law necessitated an additional lookup in a logarithm table, in order to compute the square root. In modern times the law of tangents may have better numerical properties ...
Bézout's identity (despite its usual name, it is not, properly speaking, an identity) Binet-cauchy identity; Binomial inverse theorem; Binomial identity; Brahmagupta–Fibonacci two-square identity; Candido's identity; Cassini and Catalan identities; Degen's eight-square identity; Difference of two squares; Euler's four-square identity; Euler ...
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
Euler's identity is also a special case of the more general identity that the n th roots of unity, for n > 1, add up to 0: = = Euler's identity is the case where n = 2. A similar identity also applies to quaternion exponential: let {i, j, k} be the basis quaternions; then,
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This immediately follows from Euler's four-square identity (and from the fact that the theorem is true for the numbers 1 and 2). The residues of a 2 modulo p are distinct for every a between 0 and (p − 1)/2 (inclusive). To see this, take some a and define c as a 2 mod p. a is a root of the polynomial x 2 − c over the field Z/pZ.