Search results
Results from the WOW.Com Content Network
The above groundwater flow equations are valid for three dimensional flow. In unconfined aquifers, the solution to the 3D form of the equation is complicated by the presence of a free surface water table boundary condition: in addition to solving for the spatial distribution of heads, the location of this surface is also an unknown. This is a ...
In confined aquifers , the cone of depression is a reduction in the pressure head surrounding the pumped well. When a well is pumped, the water level in the well is lowered. By lowering this water level, a gradient occurs between the water in the surrounding aquifer and the water in the well. Because water flows from high to low water levels or ...
Groundwater discharge is the volumetric flow rate of groundwater through an aquifer. Total groundwater discharge, as reported through a specified area, is similarly expressed as: = where Q is the total groundwater discharge ([L 3 ·T −1]; m 3 /s), K is the hydraulic conductivity of the aquifer ([L·T −1]; m/s),
SahysMod is a computer program for the prediction of the salinity of soil moisture, groundwater and drainage water, the depth of the watertable, and the drain discharge in irrigated agricultural lands, using different hydrogeologic and aquifer conditions, varying water management options, including the use of ground water for irrigation, and several crop rotation schedules, whereby the spatial ...
The above figures simulate possible coastal aquifers. In reality, it is complex. Due to complex geology - non-uniform rock layers and weathering, both confined and unconfined aquifers can be found within a coast. It is possible to have multiple confined aquifers at the bottom and an unconfined aquifers at the top of a coast.
For a confined aquifer or aquitard, storativity is the vertically integrated specific storage value. Specific storage is the volume of water released from one unit volume of the aquifer under one unit decline in head. This is related to both the compressibility of the aquifer and the compressibility of the water itself.
Hence the actual amount of water that can be extracted from the unit volume of aquifer by pumping or under the action of gravity is called as specific yield. The fraction of water held back in the aquifer is known as specific retention. Thus it can be said that porosity is the sum of specific yield and specific retention.
The forcing of the spring to the surface can be the result of a confined aquifer in which the recharge area of the spring water table rests at a higher elevation than that of the outlet. Spring water forced to the surface by elevated sources are artesian wells. This is possible even if the outlet is in the form of a 300-foot-deep (91 m) cave.