Search results
Results from the WOW.Com Content Network
The first PAFP, Kaede (protein), was isolated from Trachyphyllia geoffroyi in a cDNA library screen designed to identify new fluorescent proteins. [1] A fluorescent green protein derived from this screen was serendipitously discovered to have sensitivity to ultraviolet light-- We happened to leave one of the protein aliquots on the laboratory ...
EosFP is a photoactivatable green to red fluorescent protein.Its green fluorescence (516 nm) switches to red (581 nm) upon UV irradiation of ~390 nm (violet/blue light) due to a photo-induced modification resulting from a break in the peptide backbone near the chromophore. [1]
S. cerevisiae septins revealed with fluorescent microscopy utilizing fluorescent labeling. In molecular biology and biotechnology, a fluorescent tag, also known as a fluorescent label or fluorescent probe, is a molecule that is attached chemically to aid in the detection of a biomolecule such as a protein, antibody, or amino acid.
An animation of the structure of the dark state of dronpa protein Dronpa is a reversibly switchable photoactivatable fluorescent protein that is 2.5 times as bright as EGFP . [ 1 ] [ 2 ] Dronpa gets switched off by strong illumination with 488 nm (blue) light and this can be reversed by weak 405 nm UV light. [ 1 ]
Kaede is a photoactivatable fluorescent protein naturally originated from a stony coral, Trachyphyllia geoffroyi.Its name means "maple" in Japanese.With the irradiation of ultraviolet light (350–400 nm), Kaede undergoes irreversible photoconversion from green fluorescence to red fluorescence.
Proteins which sense and react to light were originally isolated from photoreceptors in algae, corals and other marine organisms. The two most commonly used photoactivatable proteins in scientific research, as of 2013, are photoactivatable fluorescent proteins and retinylidene proteins. Photoactivatable fluorescent proteins change to longer ...
A simplified Jablonski diagram illustrating the change of energy levels.. The principle behind fluorescence is that the fluorescent moiety contains electrons which can absorb a photon and briefly enter an excited state before either dispersing the energy non-radiatively or emitting it as a photon, but with a lower energy, i.e., at a longer wavelength (wavelength and energy are inversely ...
Fluorescent proteins include: Green fluorescent protein (GFP) Yellow fluorescent protein (YFP) Red fluorescent protein (RFP) This page was last edited on 1 April 2021 ...